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Social Recommender Systems (SRS) have attracted considerable attention since its accompanying service, social

networks, helps increase user satisfaction and provides auxiliary information to improve recommendations.

However, most existing SRS focus on social influence and ignore another essential social phenomenon, i.e.,

social homophily. Social homophily, which is the premise of social influence, indicates that people tend to

build social relations with similar people and form influence propagation paths. In this paper, we propose

a generic framework Social PathExplorer (SPEX for short) to enhance neural SRS. SPEX treats the neural

recommendation model as a black box and improves the quality of recommendations by modeling the social

recommendation task, the formation of social homophily, and their mutual effect in the manner of multi-task

learning. We design a Graph Neural Network based component for influence propagation path prediction to

help SPEX capture the rich information conveyed by the formation of social homophily. We further propose

an uncertainty based task balancing method to set appropriate task weights for the recommendation task

and the path prediction task during the joint optimization. Extensive experiments have validated that SPEX

can be easily plugged into various state-of-the-art neural recommendation models and help improve their

performance. The source code of our work is available at: https://github.com/XMUDM/SPEX.
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1 INTRODUCTION
Recommender systems (RS), which suggest desirable items to users, have become de facto tools for
alleviating the information overload problem. Not only can users utilize RS to search for desirable

targets efficiently, but also RS help e-commerce platforms promote their products and boost sales.

Therefore, RS have been widely deployed in practice. Real applications include music recommen-

dation (e.g., Yahoo! Music), video recommendation (e.g., Netflix), product recommendation (e.g.,

Amazon), to name a few.

In addition to user-item interactions (e.g., user-item ratings or user clicks), RS can harness auxil-

iary information to enrich the training data and provide better recommendations [1]. A promising

direction is to leverage social relations since social networking is deployed as the accompanying

service in many RS to increase user satisfaction. For example, Yelp
1
provides recommendations for

local business. At the same time, Yelp users can follow each other and check other people’s ratings

and reviews. A great number of social recommender systems (SRS) are proposed in the literature,

and they deliver superior performance than general RS without additional social features [68, 86].

Furthermore, they are shown to be effective to handle the cold-start problem (i.e., new user/item

does not have historical interactions) and data sparsity problem (i.e., many existing users/items

only have few interactions) [1].

Early SRS focus on exploiting social relations to enhance matrix factorization [45, 46] or nearest

neighbor based recommendation approaches [86]. The recent blossom of deep learning techniques

has dramatically changed the study of social recommendation [5, 10, 65]. Particularly, Graph

Neural Network (GNN), which aims at graph based learning, has become prevalent for designing

SRS [11, 12, 63, 73, 81, 85] since it is a natural fit for modeling information diffusion in the graph and

it has shown promising results for the social recommendation task. One reason for the improvements

of above SRS over traditional RS is that they model the social influence [47], i.e., the phenomenon

that people who influence each other via influence propagation paths ultimately become more

similar [47, 79].

Despite the success of SRS, we find that existing SRS fail to distinguish social influence from

another crucial social phenomenon, namely social homophily [48], and identify the mutual effect

between social homophily and social influence. As sociologists postulate, social homophily is the

phenomenon that people tend to relate to other people with similar preferences and form influence

propagation paths [48]. On one hand, as social influence diffuses along influence propagation paths,

the formation of social homophily can be viewed as the premise of social influence. On the other

hand, as their definitions reveal, social homophily and social influence are mutually reinforced. We

now illustrate the mutual effect between social homophily and social influence in the context of

SRS. As depicted in Figure 1, Alice is looking at the web page of the game Grand Theft Auto V on

Epinions
2
, an online recommender system. She finds that Swaminathan (user name: mailme_swami)

appears in the section “Highest Rated Consumer Review by the Community” because Swaminathan

recently gave a high rating on this game. After browsing Swaminathan’s Epinions homepage
3
,

Alice feels that Swaminathan has similar tastes as her (they both like action games) and therefore

starts to follow Swaminathan (i.e., establish the trust relation in Epinions). In this example, social

homophily is formed and a new influence propagation path (i.e., the social relation ⟨Swaminathan,
Alice⟩) appears due to the new user-item interaction ⟨Swaminathan, Grand Theft Auto V ⟩. After

1
https://www.yelp.com

2
https://bit.ly/3aEED2p

3
https://bit.ly/3xqhEll
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Fig. 1. An overview of the mutual effect between social homophily and social influence in the context of
social recommendation systems. Recommendation results may cause the formation of new social homophily,
and social influence propagated via the new social homophily can be utilized to help the system provide a
better recommendation.

the formation of social homophily, we can recommend Tomb Raider4, which is highly rated by

Swaminathan, to Alice due to the possible propagation of social influence.

Figure 1 reveals that, social recommendation models can be improved by distinguishing social

homophily and social influence, and modeling the mutual effect between them. Completely relying

on social influence while ignoring the formation of social homophily, as most SRS [11, 38, 64] do,

will weaken the ability of social recommendation models. The reason is that essentially they assume

that social network is invariable. But in fact, social network is dynamic, i.e., new social relations

that users build with others bring the formation of influence propagation paths and the new social

homophily, which in turn causes the diffusion of social influence along new influence propagation

paths and finally affects the recommendations as we have seen in the example of Figure 1. Modeling

and capturing the rich information conveyed by the formation of social homophily, will help SRS

understand how social influence may propagate in the future.

Based on the above rationale, in this paper, we propose a generic framework, Social PathEXplorer

(SPEX for short), to enhance neural social recommendation by modeling the recommendation

process with social influence, the formation of social homophily, and their mutual effect in the

manner of multi-task learning. SPEX is orthogonal to existing neural recommendation models that

can be applied in the social recommendation task. The goal of this work is not designing a new

recommendation method which can exceed state-of-the-art methods for the social recommendation

task, but providing some insights into how to better leverage and model both social homophily and

4
https://bit.ly/3tOVI1i
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social influence to improve existing SRS. Thus, we treat neural recommendation models as a black
box so that SPEX can be easily plugged into existing neural SRS or general neural RS when social

data is available.

The contributions of this paper are summarized as follows:

• We point out that existing SRS have failed to distinguish social homophily and social in-

fluence as well as identify their mutual effect, which limits their performance of social

recommendation.

• We revisit the concept of temporal influence in the literature of social network analysis [34]

and design a Graph Neural Network [84] based module to model the core in the establishment

of social homophily via predicting influence propagation paths.

• We propose a general multi-task learning framework called Social PathExplorer (SPEX) to

model the recommendation process with social influence, the formation of social homophily

and their mutual effect. In the joint optimization, SPEX is able to automatically balance the

weights of different tasks using uncertainty.

• SPEX can be plugged into existing neural SRS or general RS, when social information is avail-

able, to enhance the recommendation without much effort. We conduct extensive experiments

on several state-of-the-art neural SRS and general RS over public social recommendation data

sets. The experimental results demonstrate that the performance of these recommendation

models can be improved with SPEX.

The remainder of this paper is organized as follows: Section 2 introduces the background

knowledge. Section 3 provides an overview of SPEX. Section 4 illustrates how SPEX models the

formation of social homophily. Section 5 describes how SPEX can be plugged into existing social

influence driven neural recommendation models in the manner of multi-task learning. We present

our experiments in Section 6. Section 7 reviews the related work. Finally, Section 8 concludes our

work.

2 PROBLEM DEFINITION
We first review the definition of the social recommendation task. Recommendation models typically

rely on user-item historical interactions to provide recommendations. Assume that there are𝑚

users {𝑢1, · · ·𝑢𝑚} and 𝑛 items {𝑣1, · · · 𝑣𝑛}. The user-item interactions form an𝑚 × 𝑛 interaction

matrix 𝑅 = [𝑟𝑖, 𝑗 ] where 𝑟𝑖, 𝑗 = 1 if user 𝑢𝑖 has interacted with item 𝑣 𝑗 (e.g., rate, click or view),

otherwise 𝑟𝑖, 𝑗 = 0. We additionally have a social network where each node represents a user and

each edge represents the social relationships between users (e.g., friends or followers). The social

network can also be modeled by an𝑚×𝑚 social adjacency matrix 𝑆 = [𝑠𝑖, 𝑗 ], where 𝑠𝑖, 𝑗 = 1 indicates

the existence of social relation between users 𝑢𝑖 and 𝑢 𝑗 , otherwise 𝑠𝑖, 𝑗 = 0. The task of a social

recommender is as follows:

Definition 1 (Social Recommendation). Given the user-item interaction matrix 𝑅 = [𝑟𝑖, 𝑗 ] and
the social adjacency matrix 𝑆 = [𝑠𝑖, 𝑗 ], provide a list of 𝑘 items with the highest probabilities that a
target user will interact with in the future.

Note that there is another social recommendation task aiming at predicting ratings of users on

items (i.e., explicit feedback) in SRS. Since top-𝑘 recommendation is acknowledged to be more

important in practice [1], we focus on the ranking task (i.e., implicit feedback) in this paper. However,

the idea of SPEX can be generalized to the setting of explicit feedback.

3 OVERVIEW OF SPEX
Figure 2 provides an overview of SPEX using direct feature sharing mechanism (More details about

feature sharing are included in Section 5.2). SPEX treats the neural recommendation approach as

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2021.



SPEX: A Generic Framework for Enhancing Neural Social Recommendation 5

Recommendation 

Model

User Embedding

Layer

Item Embedding

Layer

< u1, v2 >

< u1, v3 >

< u2, v2 >

...

User-item

Interactions

Social Network

Influence 

Propagation 

Paths

Graph Attention

Path Prediction 

Retrieve 

Paths

Automatic Task 

Balance

rec

path

Social 

Homophily

Social

Influence

Attention

Layer

Attention

Layer

Fig. 2. An overview of SPEX with only direct feature sharing being illustrated.

a black box. SPEX uses an influence propagation path prediction module with a graph attention

mechanism to model the core in the formation of social homophily (Section 4). The user embeddings

are shared between the path prediction module and the neural recommendation model. With the

modeling of influence propagation paths, SPEX is able to capture the rich information contained in

the formation of social homophily and understand how users are or will become connected in the

social network. Then, social influence, which is diffused along the influence propagation paths, can

be better incorporated into the social recommendation process. The influence propagation path

prediction task and the recommendation task are trained simultaneously with the balance of the

two tasks being automatically achieved (Section 5).

4 MODELING THE FORMATION OF SOCIAL HOMOPHILY
The formation of social homophily is the premise of social influence, and the core of such a

process is the establishment of influence propagation paths. As social influence propagates over

the social network, it is not sufficient to model social homophily solely based on single-link

influence propagation paths such as the relation ⟨𝐵𝑜𝑏,𝐴𝑙𝑖𝑐𝑒⟩. Instead, multi-hop paths such as

⟨𝐵𝑜𝑏,𝐴𝑙𝑖𝑐𝑒,𝐶𝑎𝑟𝑜𝑙, 𝐷𝑎𝑣𝑖𝑑⟩ is desirable as they show the causal relationship:

(1) Carol can be affected by Bob since the social relation ⟨𝐵𝑜𝑏,𝐴𝑙𝑖𝑐𝑒⟩ was established earlier

than ⟨𝐴𝑙𝑖𝑐𝑒,𝐶𝑎𝑟𝑜𝑙⟩.
(2) Bob may not be influenced by Carol as ⟨𝐵𝑜𝑏,𝐴𝑙𝑖𝑐𝑒,𝐶𝑎𝑟𝑜𝑙, 𝐷𝑎𝑣𝑖𝑑⟩ shows a propagation path

from Bob to Carol, not vice verse. Bob may not see Carol’s historical actions when he is going

to make some decisions.

The above inference, however, can not be drawn based on single-link influence propagation paths

⟨𝐵𝑜𝑏,𝐴𝑙𝑖𝑐𝑒⟩ and ⟨𝐴𝑙𝑖𝑐𝑒,𝐶𝑎𝑟𝑜𝑙⟩ only.
This section will first introduce the definition of influence propagation path and how the path is

collected in SPEX. Then, we will explain how SPEX captures the core of the formation of social

homophily via predicting influence propagation paths.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2021.
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Fig. 3. The path graph of a 6-hop influence propagation path.

4.1 Influence Propagation Path
Firstly, we will review the concept of temporal influence [34] and then adopt it to provide the

definition of influence propagation path which is the medium where the social influence propagates.

Li et al. [34] point out that the time when two social actions occur needs to be considered in order

to determine the causal relationship, and they propose the concept of temporal influence: only the

action that occurred earlier may cause the action that took place later, not vice versa. The definition

of influence propagation path is constrained by temporal influence:

Definition 2 (Influence Propagation Path). A 𝑙-hop influence propagation path is a sequence
of 𝑙 + 1 users {𝑢𝑖1 , 𝑢𝑖2 , · · · , 𝑢𝑖𝑙+1

} where (1) 𝑖𝑞 indicates the 𝑞-th node (1 ≤ 𝑞 ≤ 𝑙 + 1) and nodes at
different positions can be the same (e.g., both 𝑢𝑖3 and 𝑢𝑖6 are 𝑢2 in the 6-hop influence propagation
path shown in Figure 3); (2) 𝑠𝑖𝑞−1,𝑖𝑞 = 1, i.e., (𝑞 − 1)-th node and 𝑞-th node are connected in the social
network; (3) the social relation between ⟨𝑢𝑖𝑞−2

, 𝑢𝑖𝑞−1
⟩ was created earlier than the one between ⟨𝑢𝑖𝑞−1

,
𝑢𝑖𝑞 ⟩. The social relation can be either undirected or directed. User 𝑢𝑖𝑎 can be influenced by user 𝑢𝑖𝑏
through the influence propagation path if 𝑎 > 𝑏.

Discussion: Difference Between Influence Propagation Path andMeta-path. There is another
relevant concept called meta-path in Heterogeneous Information Network based RS [23]. However,

it is necessary to define and use influence propagation path in SRS:

(1) Influence propagation path emphasizes the temporal influence while meta-path does not

consider the factor of time. Thus, influence propagation path is more accurate for SRS. Only

after the corresponding social relation has been created, one user can see and be influenced

by his/her direct social neighbors’ actions.

(2) All nodes in an influence propagation path are users, while nodes in a meta-path may have

different types (e.g., location node, item node or item type node). Influence propagation path

is available in the basic setting of social recommendation task where only user-item and

user-user interactions are available. Meta-path may not be available in SRS as it requires

more additional node information.

In the following, wewill simply use “path” and “path prediction” to refer to “influence propagation

path” and “influence propagation path prediction”, respectively.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2021.
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4.2 Generation of Paths in Social Recommenders
Starting from each user, we perform the path sampling for 50 times. And the sampling is done

node by node for each path. Each path is independently sampled. Specifically, for each node 𝑢𝑖 ,

we randomly sample the next node 𝑢𝑖+1 in the path so that the path to be formed complies with

Definition 2. That is, (1) the social relation between the current node 𝑢𝑖 and the next node 𝑢𝑖+1

exists, and (2) it is established after the social relation between 𝑢𝑖 and 𝑢𝑖−1. Furthermore, as longer

paths will introduce noisy semantics [66] and require more computation time, we set the maximal

length of the path to be six. Thus, the sampling for generating each path terminates when (1) no

possible social relation exists, or (2) the number of nodes in this path reaches six.

To fully utilize the data, we conduct data augmentation during training. For instance, for a path

𝑢1 → 𝑢2 → 𝑢3 → 𝑢4 (i.e., the influence can be propagated from 𝑢1 to 𝑢4), SPEX is trained to predict

all the nodes in this path except the first node, i.e., there are 3 predication tasks derived from this

path: (1) Given {𝑢1}, predict 𝑢2; (2) Given {𝑢1, 𝑢2}, predict 𝑢3; (2) Given {𝑢1, 𝑢2, 𝑢3}, predict 𝑢4.

4.3 Path Prediction: User Representation
Next, we explore how to model the core of social homophily, i.e., the path prediction task. The

reason for performing this task is that social homophily indicates the phenomenon that people

tend to build relations with similar people, and modeling its formation is equivalent to predicting

each link (i.e., social relation) in the influence propagation path:

Definition 3 (Influence Propagation Path Prediction). A 𝑙-hop influence propagation path
can be segmented into 𝑙 relations: {⟨𝑢𝑖1 , 𝑢𝑖2⟩, ⟨𝑢𝑖2 , 𝑢𝑖3⟩, · · · , ⟨𝑢𝑖𝑙 , 𝑢𝑖𝑙+1

⟩}, where 𝑢𝑖𝑞 (1 ≤ 𝑞 ≤ 𝑙 + 1) is
the 𝑞-th user in the path. The prediction problem for influence propagation path can then be defined as
predicting the 𝑞-th user in the path, given its preceding 𝑞 − 1 users.

The first step in path prediction is learning representations of users. Recently, Graph Neural

Network (GNN) [84, 95] have been successfully deployed in several sequence based applications

including sequential RS [83, 91]. For instance, Wu et al. [83] convert a sequence of user historical

interactions into a graph and then apply gated GNN [36] for predicting next interaction in sequential

RS. Inspired by these methods, we regard each path as a small path graph in social RS and adopt

the idea of GNN to model the path graph and extract user representations. For instance, Figure 3

shows a 6-hop path from 𝑢4 to 𝑢1 and its corresponding path graph.

However, the positional information of each node in the path is missing in the path graph:

duplicated nodes are merged into one node in the path graph. We record the distance between

the last occurrence of each node and the right-most node in the path as the positional encoding.

For instance, the position embeddings p1, p2, p3, p4 and p5, for 𝑢1, 𝑢2, 𝑢3, 𝑢4 and 𝑢5 in the example

of Figure 3 are vectors with all dimensions being 0, 1, 2, 3 and 5, respectively. And the initial

𝑑-dimensional representation h(𝑡−1)
𝑖

∈ R𝑑 at epoch 𝑡 for user 𝑢𝑖 is:

h(𝑡−1)
𝑖

= u(𝑡−1)
𝑖

+ p𝑖 , (1)

where u(𝑡−1)
𝑖

is the user embedding for user 𝑢𝑖 after epoch 𝑡 − 1 (u(0)
𝑖

is the initial user embedding

for 𝑢𝑖 ). Note that p𝑖 is fixed and will not get updated during optimization.

Then, the 𝑑-dimensional representation h(𝑡 )
𝑖

∈ R𝑑 of user 𝑢𝑖 after epoch 𝑡 can be calculated as

the aggregation of the representations of his/her direct neighbors and itself at epoch 𝑡 − 1:

h(𝑡 )
𝑖

= 𝐸𝐿𝑈
( ∑︁
𝑗 ∈N𝑖,𝑝

`
(𝑡 )
𝑖, 𝑗,𝑝

Wℎh(𝑡−1)
𝑗

)
, (2)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2021.
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whereN𝑖,𝑝 contains the direct neighbors of user𝑢𝑖 in the path 𝑝 and 𝑖 itself, 𝐸𝐿𝑈 (·) is the Exponential
Linear Unit, and Wℎ ∈ R𝑑×𝑑 is a learnable weight matrix. It is worth noting that the aggregation

is path-specific, which means N𝑖,𝑝 does not contain directed neighbors of user 𝑖 which are not in

the path 𝑝 . N𝑖,𝑝 also contains node 𝑢𝑖 to avoid that the information of node 𝑖 disappears during

the iterative aggregation process. h(𝑡 )
𝑖

will be updated via Equation 2 whenever SPEX is fed with a

path 𝑝 containing 𝑢𝑖 at epoch 𝑡 . `
(𝑡 )
𝑖, 𝑗,𝑝

in Equation 2 is the attention coefficient of node 𝑗 to 𝑖 in path

𝑝 for epoch 𝑡 . It emphasizes different degree of impacts that node 𝑖 receives from neighbors in 𝑝 ,

and it can be obtained through the following graph attention layer:

`
(𝑡 )
𝑖, 𝑗,𝑝

=

𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
w𝑇

`

[
h(𝑡−1)
𝑖

 h(𝑡−1)
𝑗

] ))
∑

𝑘∈N𝑖,𝑝
𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
w𝑇

`

[
h(𝑡−1)
𝑖

 h(𝑡−1)
𝑘

] )) , (3)

where “


” is the vertical concatenation operation, 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (·) indicates the leaky version of the

Rectified Linear Unit, and w` ∈ R2𝑑
is a learnable weight vector.

As pointed out by Velickovic et al. [71], the above learning process may be unstable and they

adopt the multi-head attention mechanism which is similar to that used in the Transformer [70].

Following their idea, we apply 𝑔 independent attention-based aggregations as shown in Equation 3

(i.e., 𝑔-head attention) and the results are concatenated to form the node representation:

h(𝑡 )
𝑖

=

𝑔
𝑞=1

𝐸𝐿𝑈

( ∑︁
𝑗 ∈N𝑖,𝑝

(
`
(𝑡 )
𝑖, 𝑗,𝑝

)
𝑞

(
Wℎ

)
𝑞
h(𝑡−1)
𝑗

)
, (4)

where

(
·
)
𝑞
indicates the 𝑞-th attention coefficient or learnable weight matrix, and “


” is the vertical

concatenation operation.

Finally, h(𝑡 )
𝑖

is passed through another graph attention layer without multiple heads to generate

the user representation ĥ(𝑡 )
𝑖

for user 𝑖 after epoch 𝑡 :

a
(𝑡 )
𝑖, 𝑗,𝑝

=

𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
w𝑇

a

[
h(𝑡 )
𝑖

 h(𝑡 )
𝑗

] ))
∑

𝑘∈N𝑖,𝑝
𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
w𝑇

a

[
h(𝑡 )
𝑖

 h(𝑡 )
𝑘

] ))
ĥ(𝑡 )
𝑖

= 𝐸𝐿𝑈
( ∑︁
𝑗 ∈N𝑖,𝑝

a
(𝑡 )
𝑖, 𝑗,𝑝

W ˆℎ
h(𝑡 )
𝑗

) (5)

where wa ∈ R2𝑔𝑑
and Wĥ ∈ R𝑑×𝑔𝑑 are a weight vector and a weight matrix, respectively.

Discussion 1: The Way to Model Paths. The problem of modeling the path can be converted

to a sequence modeling problem, where sequence models like Markov Chains [58], deep neural

networks like Convolutional Neural Network (CNN) [69], Recurrent Neural Network (RNN) [22],

and attention based methods like Transformer [27] can be adopted [13, 56, 75]. However, GNN is

superior in this task for three reasons:

(1) Firstly, GNN is able to handle loops in paths, e.g., the friends of your friends may become

your direct friends in the future [79].

(2) Secondly, the topological structure among users is important, which can be captured by a

path graph. GNN is able to handle the irregularity in the graph, i.e., each node may have a

different number of neighbors, where some critical operations (e.g., convolution) in CNN and

RNN are difficult [84, 95].
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SPEX: A Generic Framework for Enhancing Neural Social Recommendation 9

(3) Lastly, merging repeated nodes of a path into one node in the path graph and then applying

GNN makes it easier to capture repeated patterns, which is difficult to model in the original

sequence [78]. For example, we can observe from Figure 3 that 𝑢2 and 𝑢4 repeatedly appear

in the sequence as they have more neighbors than other nodes in the path graph. Such

repetitions can be captured by GNN and help model user representations better.

Another possible direction is to collect paths ending at the target user, combine them to construct

a subgraph, and adopt GNN to model the subgraph. We do not adopt this alternative since such

a method is coarse-grained: it may mix the influence sources. Moreover, modeling a subgraph is

computationally intensive compared to processing paths individually.

Discussion 2: Connection with GNN Based Sequential RS. Representation learning in the

path prediction module of SPEX is inspired by recent works on GNN based sequential RS [83, 91].

Modeling paths in social network and modeling historical interaction sequences in sequential RS

are two similar tasks: both of them regard sequential data as graphs and then adopt the idea of

GNN to model node representations. However, there also exist some differences between SPEX and

GNN based sequential RS:

(1) Paths modeled by SPEX consist of users, and paths are originally part of the social network.

No “transformation” between paths and path graphs actually occurs, meaning that there will

be no information loss. Considering the example in Figure 3, the path graph at the bottom is

the actual data, even though we say SPEX models the path (in the upper part of Figure 3)

as a graph (at the bottom of Figure 3). Differently, interaction sequences in sequential RS

consist of items. Such item sequences are not part of a larger graph. Therefore, there may

exist information loss when converting sequences to graphs.

(2) Since path graphs are actually connected in the large social network, cross-path information

can be naturally captured through information propagation in the social network. As a

comparison, the cross-sequence information in sequential RS cannot be directly captured

without special designs [54].

(3) Unlike the pioneering GNN based sequential RS [83] which treats items of a sequence equally,

SPEX models the different impacts of each neighbor user in the path graph. The key idea is

to leverage a recursive influence diffusion mechanism relying on the graph attention layer to

obtain the latent vector of each node (i.e., user representation), which naturally models the

influence propagation in the social network.

(4) Compared to those GNN based sequential RS [55] that also distinguish different impacts of

nodes in the sequence, SPEX further takes the position of node in a path into account via the

position embedding.

4.4 Path Prediction: Prediction Layer and Loss Function
The representation of the last node 𝑢𝑖𝑙+1

in a path {𝑢𝑖1 , 𝑢𝑖2 , · · · , 𝑢𝑖𝑙+1
} receives the information

(directly or indirectly) from all its preceding nodes in the path. Hence, we use the last node 𝑢𝑖𝑙+1

as an “anchor” for other nodes in the path to compare with so that the construction of the path

representation e can consider the importance of each node differently. More specifically, the path

representation e(𝑡 )𝑝 (𝑙 ) of a 𝑙-hop path 𝑝 after epoch 𝑡 can be obtained via an attention layer defined as

follows:

𝛾
(𝑡 )
𝑖 𝑗

= z𝑇𝐸𝐿𝑈
(
W1ĥ(𝑡 )

𝑖𝑙+1

+ W2ĥ(𝑡 )
𝑖 𝑗

+ s
)

g(𝑡 )
𝑝 (𝑙) =

𝑙+1∑︁
𝑗=1

𝛾
(𝑡 )
𝑖 𝑗

ĥ(𝑡 )
𝑖 𝑗
, e(𝑡 )

𝑝 (𝑙) = W3

( [
g(𝑡 )
𝑝 (𝑙)

 ĥ(𝑡 )
𝑖𝑙+1

] ) (6)
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10 Hui Li, Lianyun Li, Guipeng Xv, Chen Lin, Ke Li, and Bingchuan Jiang

where z, s ∈ R𝑑 are learnable weight vector and bias vector, respectively. W1,W2 ∈ R𝑑×𝑑 and

W3 ∈ R𝑑×2𝑑
are learnable weight matrices.

Before making predictions and computing the loss value at epoch 𝑡 , we further adopt a two-layer

attention mechanism as defined in Equation 7. The motivation is to obtain a more robust final output

path representation ṽ(𝑡 )
𝑝 (𝑙 ) for a 𝑙-hop path 𝑝 at epoch 𝑡 , by fusing the initial path representation v(𝑡−1)

𝑝 (𝑙 )

and the learned path representation e(𝑡 )
𝑝 (𝑙 ) at epoch 𝑡 . As the message passing in GNNs repeatedly

aggregates excessive noise, making the training difficulty and unstable, the combination of both

input representations and learned representations can alleviate this problem.

v(𝑡−1)
𝑝 (𝑙 ) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔

(
u(𝑡−1)
𝑖1

, · · · , u(𝑡−1)
𝑖𝑙+1

)
, 𝑢𝑖1 , · · · , 𝑢𝑖𝑙+1

∈ 𝑝

k(𝑡 )
𝑝 (𝑙 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
W(𝑣)v(𝑡−1)

𝑝 (𝑙 ) + W(𝑒)e(𝑡 )
𝑝 (𝑙 )

)
ṽ(𝑡 )
𝑝 (𝑙 ) =

[
v(𝑡 )
𝑝 (𝑙 )


(ℎ) e(𝑡 )

𝑝 (𝑙 )

]
· k(𝑡 )

𝑝 (𝑙 )

(7)

where the initial path representation v(𝑡−1)
𝑝 (𝑙 ) of a 𝑙-hop path 𝑝 is the mean embedding of all the

input embeddings of nodes in path 𝑝 . W(𝑣) ,W(𝑒) ∈ R2×𝑑
are learnable parameter matrices. “


(ℎ) ”

indicates the horizontal concatenation operation.

Given the path representation ṽ(𝑡 )
𝑝 (𝑞−1) of the first 𝑞 − 1 nodes in path 𝑝 which can be calculated

using Equation 7 (i.e., 𝑙 = 𝑞 − 1), we use the product of ṽ(𝑡 )
𝑝 (𝑞−1) and the user embedding matrix

U(𝑡−1) ∈ R𝑑×𝑚 (after updated at epoch 𝑡 − 1) to predict the probability distribution for the 𝑞-th node

in Definition 3:

ŷ(𝑡 )
𝑝𝑞

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

( (
ṽ(𝑡 )
𝑝 (𝑞−1)

)𝑇 U(𝑡−1)
)
, (8)

where y(𝑡 )
𝑝𝑞

∈ R𝑚 contains the predicted probability of each user being the 𝑞-th node in the path 𝑝

after epoch 𝑡 , and𝑚 is the number of users.

We adopt the cross-entropy loss for the path prediction task:

L (𝑡 )
𝑝𝑎𝑡ℎ

= −
∑︁
𝑝∈𝑃

|𝑝 |+1∑︁
𝑞=2

(
y𝑝𝑞 log(ŷ(𝑡 )

𝑝𝑞
)
)
, (9)

where 𝑃 is the path set, y𝑝𝑞 indicates the one-hot encoding vector of the ground-truth user at 𝑞-th

node in the path 𝑝 , and |𝑝 | denotes the number of hops in path 𝑝 . Stochastic gradient descent based

methods can be used for the optimization of Equation 9 and we adopt Adam [30] in SPEX. Note

that, in this paper, we will simply use L𝑝𝑎𝑡ℎ to represent L (𝑡 )
𝑝𝑎𝑡ℎ

if there is no ambiguity.

5 MULTI-TASK LEARNING
SPEX is a multi-task learning framework, which consists of two tasks: (1) the task of modeling

the formation of social homophily via path prediction, and (2) the social recommendation task as

defined in Section 2. The two tasks are linked by paths in the social network. We will denote the

two tasks as 𝑝𝑎𝑡ℎ and 𝑟𝑒𝑐 , respectively. In the sequel, we will first illustrate the target RS of SPEX.

Then, we will explain the designs of feature sharing and task balancing in SPEX which are two

essential components in multi-task learning [60].

5.1 Ranking and Embedding Based RS
Our goal is to make SPEX orthogonal to existing neural SRS or general neural RS applicable to

the social recommendation task so that it can be easily plugged into existing systems. Thus, the

prior knowledge of SPEX only includes: (1) the RS model needs iterative training and the user
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SPEX: A Generic Framework for Enhancing Neural Social Recommendation 11

embeddings are updated at each epoch, and (2) the RS model adopts binary cross entropy loss and

negative sampling in its optimization.

The first prior knowledge is common for existing embedding based RS models including matrix

factorization based methods [33] and neural RS models [92]. SPEX’s feature sharing mechanism

(we will illustrate it in Section 5.2), which is directly or indirectly built on embeddings, relies on

the first prior knowledge. Furthermore, we plug a two-layer network at the end of the original RS

model to stabilize the iterative training. This two-layer network is similar to what we design in the

path prediction layer (Equation 7):

q(𝑡 )
𝑖

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥
(
W(𝑢)u(𝑡−1)

𝑖
+ W(𝑓 ) f (𝑡 )

𝑖

)
f̃ (𝑡 )
𝑖

=
[
u(𝑡−1)
𝑖


(ℎ) f (𝑡 )

𝑖

]
· q(𝑡 )

𝑖

(10)

where u(𝑡−1)
𝑖

is the input user embedding for user 𝑢𝑖 at epoch 𝑡 (u
(0)
𝑖

is the initial embedding for

user 𝑢𝑖 before training), f (𝑡 )
𝑖

is the user representation of user 𝑢𝑖 output by the RS model after epoch

𝑡 , and W(𝑢) ,W(𝑓 ) ∈ R2×𝑑
are learnable parameter matrices.

Prevalent RS models typically use inner products of f (𝑡 )
𝑖

and each item embeddings in the item

embedding matrix, or a mapping network (e.g., multi-layer perceptron) using f (𝑡 )
𝑖

as the input to

generate the probability distribution for candidate items and make recommendations [59]. SPEX

uses the output f̃ (𝑡 )
𝑖

from the above two-layer network instead of the original output f (𝑡 )
𝑖

from the

RS model for making recommendations. The motivation behind the above mechanism is similar

to our design for the path prediction layer in Section 4.4: mitigate the difficulty of training and

stabilize the performance without heavy changes of the original RS model.

The second prior knowledge is also a common practice in training recommendation mod-

els [21, 92]: train the model to rank positive user-item interactions (i.e., existing user-item interac-

tions) higher than randomly sampled negative user-item interactions (i.e., non-existing user-item

interactions). A wide range of shallow and deep neural RS that can be used for social recommenda-

tion are applicable. The objective used for such models can be defined as:

L𝑟𝑒𝑐 = −
∑︁

⟨𝑖, 𝑗 ⟩∈𝑅∪𝑅−

(
𝑟𝑖, 𝑗 log 𝑟𝑖, 𝑗 + (1 − 𝑟𝑖, 𝑗 ) log (1 − 𝑟𝑖, 𝑗 )

)
, (11)

where 𝑅 indicates the user-item interaction set. In each epoch, the recommendation model randomly

samples 𝑛rec items for each user 𝑢𝑖 that he/she has not interacted with and constructs a negative

sample set 𝑛rec (𝑖) for user 𝑢𝑖 . All the negative sample set form 𝑅− for this epoch. 𝑟𝑖, 𝑗 is defined in

Section 2 and 𝑟𝑖, 𝑗 is the prediction of 𝑟𝑖, 𝑗 from the neural recommendation model of which the last

layer commonly has the sigmoid activation function to bound the value.

It is worthy noting that SPEX can be extended to fit other common recommendation objectives

like Personalized Ranking loss (BPR) [57] which also trains the model to rank the positive sample

higher than negative samples, and all-rank loss (i.e., cross entropy loss) which trains the model to

rank the ground-truth item higher than all possible item candidates.

5.2 Feature Sharing
The design of a multi-task learning architecture typically needs to consider how the feature can

be shared among different tasks. In this subsection, we describe three different feature sharing

methods, which are commonly used in the design of multi-task learning [60]. SPEX is flexible to

accommodate different feature sharing designs in addition to these three methods. Note that we do

not design the feature sharing between neural layers inside the RS model and the path prediction

module. SPEX treats neural RS as a black box and does not assume that the prior knowledge of
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the neural architecture of the recommendation model is available. Designing inter-layer sharing

requires special considerations about the detailed neural architecture of RS.

The three different feature sharing methods are:

(1) Direct Sharing. In SPEX, both tasks need to encode users into corresponding user embed-

dings before further processing. As shown in Figure 2, our framework can adopt a simple yet

effective feature sharing method: two tasks share features by using the same user embedding

layer.

(2) Cross-Stitch Sharing. SPEX can also adopt the idea of the Cross-Stitch unit [50] and

emphasize the correlation between different features during sharing. In this method, two

tasks have their own user embedding layer. And the user embeddings u(𝑟𝑒𝑐)
𝑖

(encoded by user

embedding layer in the RS model) and u(𝑝𝑎𝑡ℎ)
𝑖

(encoded by user embedding layer in the path

prediction module) for the same user 𝑢𝑖 are multiplied by a shared weight matrix to obtain

the input user embeddings û(𝑟𝑒𝑐)
𝑖

and û(𝑝𝑎𝑡ℎ)
𝑖

which will be fed into the subsequent learning

modules for the two tasks:[
û(𝑟𝑒𝑐)
𝑖

û(𝑝𝑎𝑡ℎ)
𝑖

]
=

[
𝜒 (𝑟𝑒𝑐,𝑟𝑒𝑐) 𝜒 (𝑝𝑎𝑡ℎ,𝑟𝑒𝑐)
𝜒 (𝑝𝑎𝑡ℎ,𝑝𝑎𝑡ℎ) 𝜒 (𝑟𝑒𝑐,𝑝𝑎𝑡ℎ)

] [
u(𝑟𝑒𝑐)
𝑖

u(𝑝𝑎𝑡ℎ)
𝑖

]
(12)

where the learnable parameters 𝜒 (∗,∗) indicates the correlation coefficient of one task to the

other task or the self-correlation coefficient.

(3) Shared-Private Sharing. Another more sophisticated design is a Shared-Private feature

sharing architecture. This architecture emphasizes that features contain a task-specific part

which should be private and a cross-task part which should be shared. In this method, two

task-specific user embedding layers are used. The user embeddings u(𝑟𝑒𝑐)
𝑖

and u(𝑝𝑎𝑡ℎ)
𝑖

for

the same user 𝑢𝑖 encoded by embedding layers in the RS model and the path prediction

module are passed through a shared single-layer feedforward neural network and a private

task-specific single-layer feedforward neural network. The results are concatenated and

further processed to obtain the input user embeddings û(𝑟𝑒𝑐)
𝑖

and û(𝑝𝑎𝑡ℎ)
𝑖

which will be fed

into the subsequent learning modules for the two tasks:

ú(𝑟𝑒𝑐)
𝑖

= 𝑅𝑒𝐿𝑈
(
W𝑠ℎ𝑎𝑟𝑒𝑑u(𝑟𝑒𝑐)

𝑖
+ b𝑠ℎ𝑎𝑟𝑒𝑑

)
ù(𝑟𝑒𝑐)
𝑖

= 𝑅𝑒𝐿𝑈
(
W(1)

𝑟𝑒𝑐u(𝑟𝑒𝑐)
𝑖

+ b(1)
𝑟𝑒𝑐

)
û(𝑟𝑒𝑐)
𝑖

= 𝑅𝑒𝐿𝑈
(
W(2)

𝑟𝑒𝑐

[
ú(𝑟𝑒𝑐)
𝑖

 ù(𝑟𝑒𝑐)
𝑖

]
+ b(2)

𝑟𝑒𝑐

)
ú(𝑝𝑎𝑡ℎ)
𝑖

= 𝑅𝑒𝐿𝑈
(
W𝑠ℎ𝑎𝑟𝑒𝑑u(𝑝𝑎𝑡ℎ)

𝑖
+ b𝑠ℎ𝑎𝑟𝑒𝑑

)
ù(𝑝𝑎𝑡ℎ)
𝑖

= 𝑅𝑒𝐿𝑈
(
W(1)

𝑝𝑎𝑡ℎ
u(𝑝𝑎𝑡ℎ)
𝑖

+ b(1)
𝑝𝑎𝑡ℎ

)
û(𝑝𝑎𝑡ℎ)
𝑖

= 𝑅𝑒𝐿𝑈
(
W(2)

𝑝𝑎𝑡ℎ

[
ú(𝑝𝑎𝑡ℎ)
𝑖

 ù(𝑝𝑎𝑡ℎ)
𝑖

]
+ b(2)

𝑝𝑎𝑡ℎ

)
(13)

where 𝑅𝑒𝐿𝑈 (·) indicates the Rectified Linear Unit. ú(𝑟𝑒𝑐)
𝑖

and ú(𝑝𝑎𝑡ℎ)
𝑖

denote shared features,

while ù(𝑟𝑒𝑐)
𝑖

and ù(𝑝𝑎𝑡ℎ)
𝑖

indicate private features. W and b are learnable weight matrix and

bias vector, respectively.

5.3 Automatic Task Balancing
The output of SPEX comprises a multi-class classification task trained with a cross entropy loss

L𝑝𝑎𝑡ℎ in Equation 9, and a binary classification task trained with a binary cross entropy loss L𝑟𝑒𝑐

in Equation 11. In multi-task learning, the loss objectives are normally combined with different
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task weights (i.e.,𝑤𝑝𝑎𝑡ℎ,𝑤𝑟𝑒𝑐 ) [60]:

L = 𝑤𝑝𝑎𝑡ℎL𝑝𝑎𝑡ℎ +𝑤recLrec. (14)

However, manually setting task weights𝑤𝑝𝑎𝑡ℎ and𝑤𝑟𝑒𝑐 at the beginning is a suboptimal solution,

as the two tasks may have different and changing converge speeds during training. On the other

hand, searching and dynamically updating task weights during optimization is a difficult and

expensive process. Task imbalances will impede proper training because theymanifest as imbalances

between backpropagated gradients. To overcome these issues, we need to design an automatic task

balancing mechanism for SPEX.

5.3.1 Uncertainty based Multi-task Weighing. Engineering problems are typically solved within the

confines of a model universe containing physical and probabilistic models (or sub-models) [32]. The

model universe may have inherently uncertain quantities; furthermore, the (alternative) sub-models

are invariably imperfect giving rise to additional uncertainties. Modeling these uncertainties is an

important part of building the model universe, enhancing its reliability and reducing the risk [28, 32].

In view of this, we design the automatic task balancing mechanism for SPEX based on modeling

uncertainty in multi-task learning.

Uncertainty can be captured with Bayesian modeling approaches [14, 28]. In Bayesian modeling,

Epistemic uncertainty and Aleatoric uncertainty are two typical uncertainties. Epistemic uncertainty

accounts for uncertainty in the model parameters which captures what the model does not know due

to lack of collected data. Aleatoric uncertainty captures noise inherent in the observations. Aleatoric

uncertainty can be further divided into heteroscedastic (data-dependent) uncertainty, which depends

on the input data and is predicted as amodel output, and homoscedastic (task-dependent) uncertainty,
which stays constant for different data inputs. In multi-task learning, task-dependent uncertainty

indeed captures the relative confidence between tasks, reflecting the uncertainty inherent to each

task [29]. Therefore, we can weigh task losses via capturing homoscedastic uncertainty
5
in a

multi-task learning setting.

Recently, Kendall et al. [29] has proposed an uncertainty based method for automatic setting

task weights in multi-task learning which consists of any numbers of regression task(s) and/or

multi-class classification task(s). However, their method does not fit the binary classification trained
with the negative sampling strategy and can not be used in the social recommendation task. The design
of the automatic task balancing mechanism in SPEX is built on the top of their idea, but we provide

significant improvements so that it can be used in the social recommendation task.

Firstly, using Bayesianmodeling, we derive the log likelihood for the outputs of the path prediction

part in Equation 14 based on maximizing the Gaussian likelihood with homoscedastic uncertainty.

As Kendall et al. [29], we squash a scaled output of path prediction in SPEX:

𝑃𝑟𝑝𝑎𝑡ℎ
(
𝑦𝑡

��p(𝑥1:𝑡−1), 𝛼
)
= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑦𝑡 = 𝑐,

1

𝛼2
p(𝑥1:𝑡−1)

)
, (15)

where 𝛼 is a positive scalar and 𝑐 is the id of the ground-truth user of the 𝑡-th node. p(𝑥1:𝑡−1)
indicates the output of the path prediction module given the input 𝑥1:𝑡−1 that includes the first 𝑡 − 1

nodes in the path 𝑥 , i.e., p(𝑥1:𝑡−1) is the probability distribution of all𝑚 user candidates for the

𝑡-th node in the path 𝑥 . Equation 15 can be interpreted as a Boltzmann distribution (also called

Gibbs distribution) [29] and 𝛼 is often referred to as temperature. The magnitude of 𝛼 indicates how

“uniform” the discrete distribution is, which is related to its uncertainty as measured in entropy [29].

5
Note that the type of uncertainty is only specified in this paragraph. In other parts of this paper, the term uncertainty
simply refers to homoscedastic uncertainty.
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Taking the negative logarithm of the likelihood (i.e., L𝑝𝑎𝑡ℎ in Equation 9) of 𝑡-th node being user

with id 𝑐 , we have:

L𝑝𝑎𝑡ℎ (𝑦𝑡 = 𝑐, 𝑥1:𝑡−1) = − log 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑦𝑡 = 𝑐, p(𝑥1:𝑡−1)

)
= − p𝑐 (𝑥1:𝑡−1) + log

𝑚∑︁
𝑖=1

exp

(
p𝑖 (𝑥1:𝑡−1)

)
,

(16)

where p𝑖 (𝑥1:𝑡−1) indicates the 𝑖-th dimension of the probability distribution vector p(𝑥1:𝑡−1). Then,
the log likelihood for the output being class 𝑐 in Equation 15 can be derived as follows:

log 𝑃𝑟
(
𝑦𝑡 = 𝑐

��p(𝑥1:𝑡−1), 𝛼
)
=

1

𝛼2
p𝑐 (𝑥1:𝑡−1) − log

𝑚∑︁
𝑖=1

exp

(
1

𝛼2
p𝑖 (𝑥1:𝑡−1)

)
= − 1

𝛼2
L𝑝𝑎𝑡ℎ (𝑦𝑡 = 𝑐, 𝑥1:𝑡−1) + log

( 𝑚∑︁
𝑖=1

exp

(
p𝑖 (𝑥1:𝑡−1)

) ) 1

𝛼2

− log

𝑚∑︁
𝑖=1

exp

( 1

𝛼2
p𝑖 (𝑥𝑖:𝑡−1)

)
.

(17)

Using the following approximation proposed by Kendall et al. [29] which becomes an equality

when 𝛼 → 1:

1

𝛼

𝑚∑︁
𝑖=1

exp

(
1

𝛼2
p𝑖 (𝑥1:𝑡−1)

)
≈

( 𝑚∑︁
𝑖=1

(
exp

(
p𝑖 (𝑥1:𝑡−1)

) )) 1

𝛼2

, (18)

we have:

log 𝑃𝑟
(
𝑦𝑡 = 𝑐

��p(𝑥1:𝑡−1), 𝛼
)

= − 1

𝛼2
L𝑝𝑎𝑡ℎ (𝑦𝑡 = 𝑐, 𝑥1:𝑡−1) − log

∑𝑚
𝑖=1

exp

(
1

𝛼2
p𝑖 (𝑥𝑖:𝑡−1)

)( ∑𝑚
𝑖=1

exp

(
p𝑖 (𝑥1:𝑡−1)

) ) 1

𝛼2

≈ − 1

𝛼2
L𝑝𝑎𝑡ℎ (𝑦𝑡 = 𝑐, 𝑥1:𝑡−1) − log𝛼.

(19)

Unlike the above log likelihood for the path prediction outputs in Equation 14, the log likelihood

of the recommendation outputs in Equation 14 is usually passed through the sigmoid activation

function 𝜎 (·) to generate the probability. The approximation (Equation 18) proposed by Kendall et
al. [29] is designed for the cross entropy loss, but it cannot be used for the negative sampling and the
binary cross entropy loss.

5.3.2 Novel Approximations for Recommendation. To incorporate the binary classification task with

negative sampling into the uncertainty based method so that task weights can be automatically set

in SPEX, we propose another approximation:

1

_2

(
exp( 𝑥

_2
) + 1

)
≈

(
exp(𝑥) + 1

) 1

_2 , (20)

which becomes an equality when the scalar _ → 1. Based on Equation 20, we can derive the

following approximations for the sigmoid function 𝜎 (·) which is the last layer of deep neural
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networks for binary classification tasks:

𝜎 ( 𝑥
_2

) =
exp( 𝑥

_2
)

exp( 𝑥
_2
) + 1

≈ 1

_2

( exp(𝑥)
exp(𝑥) + 1

) 1

_2 =
1

_2

(
𝜎 (𝑥)

) 1

_2

1 − 𝜎 ( 𝑥
_2

) = 1

exp( 𝑥
_2
) + 1

≈ 1

_2

(
1

exp(𝑥) + 1

) 1

_2

=
1

_2

(
1 − 𝜎 (𝑥)

) 1

_2

.

(21)

Let ⟨𝑖, 𝑗⟩ be a user-item interaction and 𝑟𝑖, 𝑗 represents the label for ⟨𝑖, 𝑗⟩ (1 if ⟨𝑖, 𝑗⟩ is positive,
otherwise 0). 𝑅 indicates the outputs of the recommendation model for all the interactions in the

user-item interaction set 𝑅. And 𝑟𝑖, 𝑗 is the predicted probability of a specific user-item interaction

⟨𝑖, 𝑗⟩ being positive. Then, the binary classification likelihood of the recommendation using negative

sampling is as follows:

𝑃𝑟 (𝑅 |𝑅) =
∏

⟨𝑖, 𝑗 ⟩∈𝑅
𝑃𝑟

(
𝑟𝑖, 𝑗

��𝑟𝑖, 𝑗 ) = ∏
⟨𝑖, 𝑗 ⟩∈𝑅

(
𝜎
(
𝑟𝑖, 𝑗

) ∏
𝑗
′ ∈ neg

rec
(𝑖)

(
1 − 𝜎

(
𝑟𝑖, 𝑗 ′

) ))
, (22)

where 𝑛𝑟𝑒𝑐 (𝑖) is the negative sample set for the user 𝑖 .

Similar to Equation 15, we introduce a scalar 𝛽 into Equation 22 to get a scaled version of the

output from the recommendation model:

𝑃𝑟 (𝑅 |𝑅, 𝛽) =
∏

⟨𝑖, 𝑗 ⟩∈𝑅

(
𝜎
(𝑟𝑖, 𝑗
𝛽2

) ∏
𝑗
′ ∈ neg

rec
(𝑖)

(
1 − 𝜎

(𝑟𝑖, 𝑗 ′
𝛽2

) ))
, (23)

which can also be interpreted as a Boltzmann distribution (i.e., Gibbs distribution) like Equation 15.

The input is scaled by 𝛽2
(i.e., temperature). Then the log likelihood for the recommendation part

in SPEX can be written as:

log 𝑃𝑟

(
𝑅
��𝑅, 𝛽) = ∑︁

⟨𝑖, 𝑗 ⟩∈𝑅

(
log

(
𝜎
(𝑟𝑖, 𝑗
𝛽2

) )
+

∑︁
𝑗
′ ∈ neg

rec
(𝑖)

log

(
1 − 𝜎

(𝑟𝑖, 𝑗 ′
𝛽2

) ))
≈

∑︁
⟨𝑖, 𝑗 ⟩∈𝑅

(
1

𝛽2
log

(
𝜎
(
𝑟𝑖, 𝑗

) )
+ 1

𝛽2

∑︁
𝑗
′ ∈ neg

rec
(𝑖)

log

(
1 − 𝜎

(
𝑟𝑖, 𝑗 ′

) )
− 2(𝑛𝑟𝑒𝑐 + 1) log 𝛽

)
= − 1

𝛽2
L𝑟𝑒𝑐 − 2(𝑛𝑟𝑒𝑐 + 1) · |𝑅 | · log 𝛽,

(24)

where |𝑅 | is the number of user-item interactions in 𝑅. We use the approximations in Equation 21

to the penultimate transition of Equation 24.

5.3.3 Optimization. We maximize the log likelihood of SPEX in maximum likelihood inference,

while we minimize the joint objective during optimization. Thus, the joint loss L in Equation 14

can be formulated as:

L = − log

(
𝑃𝑟

(
𝑃
��𝑃, 𝛼 ) · 𝑃𝑟 (𝑅��𝑅, 𝛽 ) )

≈ 1

𝛼2
L𝑝𝑎𝑡ℎ +

1

𝛽2
L𝑟𝑒𝑐 + |𝑃 | · log𝛼 + 2(𝑛𝑟𝑒𝑐 + 1) · |𝑅 | · log 𝛽

= exp(−2𝛼 ′) · L𝑝𝑎𝑡ℎ + exp(−2𝛽 ′) · L𝑟𝑒𝑐 + |𝑃 | · 𝛼 ′ + 2(𝑛𝑟𝑒𝑐 + 1) · |𝑅 | · 𝛽 ′,

(25)

where 𝑃 is the path set, 𝑃 is the outputs of the path prediction module for all paths, and |𝑃 | is the
number of total hops in all paths. Equation 19 (aggregation of all paths) and Equation 24 are used

in the penultimate transition of Equation 25. In the last transition of Equation 25, we let 𝛼 ′ = log𝛼
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and 𝛽 ′ = log 𝛽 , and train the model to learn 𝛼 ′
, 𝛽 ′ instead of the unconstrained scalars 𝛼 , 𝛽 . This is

for the numerical stability since
1

𝛼2
,

1

𝛽2
may encounter the overflow error for very small 𝛼 and 𝛽 ,

and log𝛼 , log 𝛽 will have the math domain error for nonpositive 𝛼 and 𝛽 .

The above mechanism learns the relative weights of L𝑝𝑎𝑡ℎ and L𝑟𝑒𝑐 , and automatically balances

the path prediction task and the social recommendation task. 𝛼 ′
and 𝛽 ′ are automatically learned

and used for balancing. A small value of 𝛼 ′
(𝛽 ′) will decrease the contribution of L𝑝𝑎𝑡ℎ (L𝑟𝑒𝑐 ),

whereas a large value will increase its contribution. 𝛼 ′
and 𝛽 ′ are regulated by the last two terms in

Equation 25. This way, we provide an automatic mechanism to balance the two tasks. Compared

to previous works [29, 60], our method fits the common setting of using negative sampling for

training RS. It is nontrivial to design such a new approach for automatic task balancing without the
approximations that we proposed in Equations 20 and 21.

5.4 Complexity of SPEX
Observed from Equation 25 that the cost of SPEX mainly consists of computing two parts: L𝑟𝑒𝑐

and L𝑝𝑎𝑡ℎ . The complexity of L𝑟𝑒𝑐 depends on the chosen RS. The cost for the calculation of

L𝑝𝑎𝑡ℎ is dominated by the 𝑔 independent attention-based aggregations. Each aggregation receives

state information from each neighbor node (i.e., N𝑖,𝑝 in Equation 2) and updates the state of the

concerned nodes. The cost for the propagation is 𝑂
(
�̄�(𝑛 + 1)𝑝

)
where �̄� is the average number

of nodes per path, 𝑛 is the average direct neighbors of each node in one path (note that N𝑖,𝑝 in

Equation 2 contains both direct neighbors in the path and the concerned node itself), and 𝑝 is the

number of paths. Therefore, the overall cost for SPEX is 𝑂 (𝑅) +𝑂
(
𝑔�̄�(𝑛 + 1)𝑝

)
, where 𝑂 (𝑅) is the

complexity of the RS model.

The additional cost of SPEX, compared to original RS models, is for path prediction. It is worthy

pointing out that prevalent GNN based sequence modeling methods that are used in sequential

RS [83] typically have a complexity of 𝑂 (�̄�2𝑝) where �̄� is the average number of nodes per

sequence and 𝑝 is the number of sequences. The cost for each attention-based aggregation in SPEX

is 𝑂
(
�̄�(𝑛 + 1)𝑝

)
, which is of the same order of magnitude as 𝑂 (�̄�2𝑝). To stabilize the learning

process, we adopt the multi-head attention mechanism which increases the cost of path prediction

to 𝑂
(
𝑔�̄�(𝑛 + 1)𝑝

)
. However, a small value (e.g., 1-3) as we will show in our experiments (see

Section 6.7) is sufficient for 𝑔. Therefore, the actually cost 𝑂
(
𝑔�̄�(𝑛 + 1)𝑝

)
of path prediction in

SPEX does not deviate too much from the common cost 𝑂 (�̄�2𝑝) of prevalent GNN based sequence

modeling methods.

6 EXPERIMENT
In this section, we conduct an experimental study using real data sets to verify the effectiveness of

SPEX. Through experiments, we aim to answer the following research questions:

• RQ1: Can SPEX improve the performance of state-of-the-art recommendation models for

social recommendation?

• RQ2: How does SPEX perform on the auxiliary task, i.e., path prediction?

• RQ3: Is SPEX able to further enhance RS that also model social homophily?

• RQ4: Does the automatic task balancing mechanism in SPEX provide better performance

than the naive method which sets the task weights equally?

• RQ5: What are the effects of choosing different settings (e.g., feature sharing and number of

heads) in SPEX?

In the sequel, we first explain our experimental settings. Then, we provide experimental results

and analyses to answer the above questions. We will investigate RQ1, RQ2, RQ3 and RQ4 in
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Table 1. Statistics of three data sets.

Epinions Weibo Twitter

# of Users 12,645 6,812 8,930

# of Items 12,455 19,519 232,849

# of User-item Interactions 365,219 157,555 466,259

# of User-User Relations 699,893 133,712 96,718

# of Influence Propagation Paths 152,638 189,468 35,402

Sections 6.2, 6.3, 6.4, and 6.5, respectively. RQ5 will be analyzed in Sections 6.6 and 6.7. The source

code of our work is public available
6
.

6.1 Experiment Settings

Data: SPEX can handle traditional social relationships (e.g., friends or followers). However, we do

not find public data sets containing creation time or order of creation for social relationships. Since

constructing influence propagation paths requires such information, we adopt three public social

recommendation data sets Epinions, Weibo and Twitter which provide creation time for alternative

social relations including trust, retweeting and replying in our experiments. The statistics of the

data are shown in Table 1. In the following, we briefly introduce three data sets:

• Epinions7 contains user ratings on products. In addition, each user can indicate their trust

(with creation time) towards other users’ ratings or reviews. The trust relation is treated as

the social relation in our experiments.

• Weibo8 contains users from Sina Weibo
9
as well as their tweets and retweets. As the retweet-

ing behavior shows interest and trust, we treat it as the social relationship. If a user 𝑢𝑖 has

retweeted a microblog from another user 𝑢 𝑗 at time 𝑡 , a social relation from 𝑢𝑖 to 𝑢 𝑗 will be

created with the timestamp 𝑡 .

• Twitter10 contains the retweeting and replying behaviors crawled from Twitter. If a user 𝑢𝑖
retweets or replies to a tweet from user 𝑢 𝑗 at time 𝑡 , a social relation from 𝑢𝑖 to 𝑢 𝑗 will be

created with the timestamp 𝑡 .

Recommendation Models: The design goal of SPEX is to make it flexible and easy to be plugged

into existing recommendation models. Therefore, we choose the following state-of-the-art neural

social recommenders and general neural recommenders, and verify whether their performance on

social recommendation can be further improved with the help of SPEX without heavy modifications:

• NCF11 [21] is the neural network based collaborative filtering method which ensembles both

generalized matrix factorization (GMF) and multi-layer perceptron (MLP).

• NGCF12 [76] is the neural graph collaborative filtering method which exploits the user-item

bipartite graph and propagates embeddings on it so that the collaborative signal can be

injected into the embedding process.

6
https://github.com/XMUDM/SPEX

7
https://www.cse.msu.edu/∼tangjili/trust.html

8
https://www.aminer.cn/data-sna#Weibo-Net-Tweet

9
https://www.weibo.com

10
https://www.aminer.cn/data-sna#Twitter-Dynamic-Net

11
https://github.com/guoyang9/NCF

12
https://github.com/liu-jc/PyTorch_NGCF
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• LightGCN13
[20] is the improved version of NGCF which only includes the most essential

component of GNN to make the model more concise and appropriate for the recommendation

task.

• GraphRec14 [11] is a GNN based social recommendation approach which captures both the

interactions in user-item bipartite graph and opinions in user-user social network to provide

better social recommendation.

• SAMN15
[5] uses the memory network to learn user-friend relation vectors, which can

capture the varying aspect attentions that a user shares with his/her different friends. A

friend-level attention component is used to identify different influence strength of a user’s

friends.

• DiffNet++16 [80] models both neural influence diffusion in user-user social network and

interest diffusion in user-item interaction graph for social recommendation.

• FuseRec [51] is a fusion recommender which models several social impacts (including social

homophily) separately and later combines them to make recommendations.

• DANSER17
[82] is the dual graph attention networks which collaboratively learn representa-

tions for different social impacts, including social homophily, for social recommendation.

For RS except FuseRec, we directly modify their implementations from original authors, and

plug SPEX into them. The modifications include:

• For NGCF, the original paper adopts Bayesian Personalized Ranking loss (BPR) [57] and

we modify it to use binary cross entropy loss so that all recommendation approaches are

compared fairly.

• NCF has two types of user embeddings for GMF (𝑑-dimensional embeddings) and MLP (2𝑑-

dimensional embeddings), respectively. When adopting SPEX to enhance its performance,

we concatenate two types of user embeddings (3𝑑-dimensional embeddings) and pass it

to a single-layer feedforward neural network with ReLU to get a unified user embeddings

(𝑑-dimensional embeddings). The unified user embeddings are used as the input (from NCF)

to the feature sharing module. For the recommendation model itself, the two types of user

embeddings are still used to keep the recommendation process the same as the original NCF.

• Since we assume the simplest setting of social recommendation and there is no additional

user/item features, we remove the fusion layer that fuses additional features in DiffNet++ as

suggested by the authors [80].

For FuseRec, the implementation is not public available. Thus, we carefully implement it following

the guidance of its paper [51] and then plug SPEX into it.

Notations: In our reported results, “XX & SPEX” denotes that our framework SPEX is used to

enhance the recommendation model “XX” where “XX” is one of the recommendation approaches

used in our experiments. The percentage, if shown, indicates the improvement of the corresponding

model, when enhanced with SPEX, over its original version. Positive improvements or best results

are shown in bold fonts.

Hardware: The experiments were run on a machine with two Intel(R) Xeon(R) CPU E5-2678 v3 @

2.50GHz, 256 GB main memory and 8 GeForce RTX 2080 Ti graphics cards with 11 GB memory per

13
https://github.com/gusye1234/LightGCN-PyTorch

14
https://github.com/wenqifan03/GraphRec-WWW19

15
https://github.com/chenchongthu/SAMN

16
https://github.com/PeiJieSun/diffnet

17
https://github.com/qitianwu/DANSER-WWW-19
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card. During running, each program will monopolize one graphics card even if it does not require

the complete 11 GB video memory.

Hyper-parameters: For all methods, negative sample number 𝑛𝑟𝑒𝑐 is set to 5, and batch size is 256.

For all method except DANSER, the embedding size 𝑑 is set to 64. DANSER with the embedding

size 64 will encounter the out-of-memory problem using the graphics card in our experiment

environment. Thus, we compare the original DNASER and the SPEX-enhanced DNASER using 16

as the embedding size for both methods. Adam optimizer [30] is used for all methods with an initial

learning rate of 0.001. For SPEX, the default number of heads 𝑔 in path prediction is 3. By default,

SPEX uses the direct feature sharing as shown in Figure 2. For all methods, the initial embeddings

are generated from N(0, 1).

Evaluation: We evaluate the recommendation performance and the path prediction performance

of all the models using two common evaluation measures for ranking tasks, namely 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and

𝑁𝐷𝐶𝐺@𝐾 with 𝐾 = {10, 20, 50}:

• We adopt the leave-one-out evaluation used by NCF [21], which is also widely used in the

evaluation of other RS, to assess the recommendation performance. For each user, we hold out

his/her latest interacted item as test data, the second latest interacted item as validation data,

and the remaining interacted items as training data. We treat each test item as the positive

item and randomly sample 99 negative items that this user has not interacted with before.

Then, the model ranks the 100 items (1 positive and 99 negative items) for this user and we

evaluate whether the positive item is in the top 𝐾 . We calculate 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝑁𝐷𝐶𝐺@𝐾

for each test user and report the average score for all test users.

• To assess the performance of path prediction, paths in each data set are randomly split into

training set (90%) and test set (10%). The user to be predict in a path is regarded as the positive

user. Assume that his/her preceding node in this path is 𝑢𝑝 . We randomly sample 99 users,

who are not direct social neighbors of 𝑢𝑝 in the data set, as negative users. Then, the model

ranks the 100 users (1 positive and 99 negative users) and we evaluate whether the positive

user is in the top 𝐾 . We calculate 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝑁𝐷𝐶𝐺@𝐾 for each test path and report the

average score for all test paths.

6.2 Performance of SPEX on Enhancing Social Recommendation (RQ1)
Tables 2, 3 and 4 illustrate the results of NCF, NGCF, LightGCN, GraphRec, SAMN and DiffNet++

on three data sets for the social recommendation task. FuseRec and DANSER are social homophily

based models and we will investigate the influence of SPEX on them in Section 6.4 separately for

RQ3.

From the results in Tables 2, 3 and 4, we can observe that SPEX is able to improve the social

recommendation performance of NCF, NGCF, LightGCN, GraphRec, SAMN and DiffNet++ in most

cases. To be specific, we can see that:

• For data sets Epinions and Weibo, all the RS models consistently get improved by SPEX

with a large margin for both 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝑁𝐷𝐶𝐺@𝐾 . For instance, modeling social rec-

ommendation task and path prediction task collaboratively using SPEX helps enhance the

recommendation performance of NCF by 2.51%-8.38% and 5.75%-15.27% on Epinions and

Weibo, respectively.

• For data set Twitter, all the RS models can get improved by SPEX, but the improvements

are not as significant as the results on Epinions and Weibo. The reason is that RS models

without SPEX already achieve hard-to-improve performance on Twitter data set and there is
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relatively little room for improvements. For example, LightGCN achieves 0.9852, which is

close to 1, for 𝑅𝑒𝑐𝑎𝑙𝑙@10 on Twitter. Using SPEX boosts its performance by 0.47% only.

The above observations verify that SPEX achieves our main design goal: Improve the performance
of RS models in social recommendation task via modeling the social recommendation task, the formation
of social homophily, and their mutual effect in the manner of multi-task learning.

Table 2. Performance of social recommendation on Epinions.

Method

Recall NDCG

@10 @20 @50 @10 @20 @50

NCF 0.5973 0.7428 0.9161 0.3806 0.4155 0.4517

NCF & SPEX

0.6421 0.7812 0.9391 0.4125 0.4387 0.4702

↑7.50% ↑5.17% ↑2.51% ↑8.38% ↑5.58% ↑4.10%
NGCF 0.6520 0.7805 0.9376 0.4249 0.4574 0.4889

NGCF & SPEX

0.6669 0.7952 0.9483 0.4332 0.4658 0.4945

↑2.29% ↑1.88% ↑1.14% ↑1.95% ↑1.84% ↑1.15%
LightGCN 0.6510 0.7575 0.8939 0.4365 0.4631 0.4900

LightGCN & SPEX

0.6639 0.7964 0.9436 0.4379 0.4648 0.4932

↑1.98% ↑5.14% ↑5.56% ↑0.32% ↑0.37% ↑0.65%
GraphRec 0.6062 0.7661 0.9410 0.3526 0.3915 0.4291

GraphRec & SPEX

0.6301 0.7828 0.9507 0.3824 0.4211 0.4548

↑3.94% ↑2.18% ↑1.03% ↑8.45% ↑7.56% ↑5.99%
SAMN 0.6130 0.7557 0.9177 0.3690 0.4051 0.4382

SAMN & SPEX

0.6265 0.7687 0.9300 0.3801 0.4173 0.4492

↑2.20% ↑1.72% ↑1.34% ↑3.01% ↑3.01% ↑2.51%
DiffNet++ 0.6561 0.7900 0.9386 0.4273 0.4612 0.4909

DiffNet++ & SPEX

0.6699 0.7984 0.9451 0.4397 0.4722 0.5016

↑2.10% ↑1.06% ↑0.69% ↑2.90% ↑2.39% ↑2.18%

Table 3. Performance of social recommendation on Weibo.

Method

Recall NDCG

@10 @20 @50 @10 @20 @50

NCF 0.4866 0.6173 0.8315 0.3136 0.3465 0.3890

NCF & SPEX

0.5512 0.6913 0.8793 0.3615 0.3901 0.4274

↑13.28% ↑11.99% ↑5.75% ↑15.27% ↑12.58% ↑9.87%
NGCF 0.5118 0.6285 0.8307 0.3393 0.3704 0.4093

NGCF & SPEX

0.5896 0.7173 0.8900 0.3936 0.4260 0.4603

↑15.20% ↑14.13% ↑7.14% ↑16.00% ↑15.01% ↑12.46%
LightGCN 0.5150 0.6332 0.8110 0.3423 0.3706 0.4052

LightGCN & SPEX

0.6257 0.7495 0.9076 0.4270 0.4581 0.4895

↑21.50% ↑18.37% ↑11.91% ↑24.74% ↑23.61% ↑20.80%
GraphRec 0.4829 0.6492 0.8693 0.2851 0.3232 0.3697

GraphRec & SPEX

0.5217 0.6620 0.8752 0.3262 0.3616 0.4012

↑8.03% ↑1.97% ↑0.68% ↑14.42% ↑11.88% ↑8.52%
SAMN 0.4533 0.5815 0.7828 0.2859 0.3187 0.3601

SAMN & SPEX

0.5400 0.6607 0.8478 0.3581 0.3871 0.4248

↑19.13% ↑13.62% ↑8.30% ↑25.25% ↑21.46% ↑17.97%
DiffNet++ 0.5585 0.6788 0.8598 0.3840 0.4144 0.4503

DiffNet++ & SPEX

0.6338 0.7527 0.9106 0.4376 0.4677 0.4993

↑13.48% ↑10.89% ↑5.91% ↑13.96% ↑12.86% ↑10.88%
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Table 4. Performance of social recommendation on Twitter.

Method

Recall NDCG

@10 @20 @50 @10 @20 @50

NCF 0.9848 0.9897 0.9960 0.8891 0.8904 0.8918

NCF & SPEX

0.9849 0.9908 0.9964 0.8893 0.8907 0.8920

↑0.01% ↑0.11% ↑0.04% ↑0.02% ↑0.03% ↑0.02%
NGCF 0.9555 0.9620 0.9713 0.8473 0.8489 0.8507

NGCF & SPEX

0.9649 0.9782 0.9920 0.8791 0.8821 0.8848

↑0.98% ↑1.68% ↑2.13% ↑3.75% ↑3.91% ↑4.01%
LightGCN 0.9852 0.9889 0.9947 0.8720 0.8729 0.8743

LightGCN & SPEX

0.9898 0.9924 0.9969 0.8825 0.8832 0.8839

↑0.47% ↑0.35% ↑0.22% ↑1.20% ↑1.18% ↑1.10%
GraphRec 0.9251 0.9730 0.9954 0.7365 0.7426 0.7479

GraphRec & SPEX

0.9695 0.9853 0.9973 0.7969 0.8037 0.8087

↑4.80% ↑1.26% ↑0.19% ↑8.20% ↑8.23% ↑8.13%
SAMN 0.9852 0.9886 0.9924 0.8807 0.8814 0.8821

SAMN & SPEX

0.9907 0.9929 0.9948 0.8914 0.8843 0.8830

↑0.56% ↑0.43% ↑0.24% ↑1.21% ↑0.33% ↑0.10%
DiffNet++ 0.9819 0.9908 0.9953 0.8804 0.8815 0.8824

DiffNet++ & SPEX

0.9931 0.9947 0.9954 0.8991 0.8996 0.8997

↑1.14% ↑0.39% ↑0.01% ↑2.12% ↑2.05% ↑1.96%

6.3 Performance of SPEX on Enhancing Path Prediction (RQ2)
Next, we report and analyze the performance on the auxiliary task, i.e., path prediction. In Tables 5, 6

and 7, we show the path prediction results of using the path predictionmodule in SPEX only (denoted

as “SPEX”) and the complete SPEX with NCF, NGCF, LightGCN, GraphRec, SAMN or DiffNet++

embedded. FuseRec and DANSER are social homophily based models and we will investigate the

influence of SPEX on them in Section 6.4 separately for RQ3.

Table 5. Performance of path prediction on Epinions.

Method

Recall NDCG

@10 @20 @50 @10 @20 @50

SPEX 0.7883 0.8562 0.9267 0.6058 0.6231 0.6372

NCF & SPEX

0.8105 0.8683 0.9349 0.6232 0.6370 0.6484

↑2.82% ↑1.41% ↑0.88% ↑2.87% ↑2.23% ↑1.76%

NGCF & SPEX

0.7975 0.8615 0.9277 0.6160 0.6321 0.6453

↑1.17% ↑0.62% ↑0.11% ↑1.68% ↑1.44% ↑1.27%

LightGCN & SPEX

0.8619 0.9167 0.9650 0.6764 0.6903 0.7000

↑9.34% ↑7.07% ↑4.13% ↑11.65% ↑10.78% ↑9.86%

GraphRec & SPEX

0.8812 0.9318 0.9742 0.6974 0.7103 0.7188

↑11.78% ↑8.83% ↑5.13% ↑15.12% ↑13.99% ↑12.81%

SAMN & SPEX

0.8646 0.9212 0.9656 0.6693 0.6837 0.6927

↑9.68% ↑7.59% ↑4.20% ↑10.48% ↑9.73% ↑8.71%

DiffNet++ & SPEX

0.8312 0.8981 0.9541 0.6446 0.6571 0.6641

↑5.44% ↑4.89% ↑2.96% ↑6.40% ↑5.46% ↑4.22%
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Table 6. Performance of path prediction on Weibo.

Method

Recall NDCG

@10 @20 @50 @10 @20 @50

SPEX 0.8932 0.9239 0.9570 0.7885 0.7962 0.8029

NCF & SPEX

0.9193 0.9457 0.9705 0.8121 0.8187 0.8237

↑2.92% ↑2.36% ↑1.41% ↑2.99% ↑2.83% ↑2.59%

NGCF & SPEX

0.9314 0.9518 0.9725 0.8277 0.8329 0.8370

↑4.28% ↑3.02% ↑1.62% ↑4.97% ↑4.61% ↑4.25%

LightGCN & SPEX

0.9519 0.9691 0.9854 0.8496 0.8547 0.8580

↑6.57% ↑4.89% ↑2.97% ↑7.75% ↑7.35% ↑6.86%

GraphRec & SPEX

0.9333 0.9534 0.9747 0.8334 0.8385 0.8428

↑4.49% ↑3.19% ↑1.85% ↑5.69% ↑5.31% ↑4.97%

SAMN & SPEX

0.9490 0.9651 0.9811 0.8495 0.8536 0.8568

↑6.25% ↑4.46% ↑2.52% ↑7.74% ↑7.21% ↑6.71%

DiffNet++ & SPEX

0.9149 0.9386 0.9655 0.8137 0.8197 0.8251

↑2.43% ↑1.59% ↑0.89% ↑3.20% ↑2.95% ↑2.76%

Table 7. Performance of path prediction on Twitter.

Method

Recall NDCG

@10 @20 @50 @10 @20 @50

SPEX 0.7649 0.8160 0.8830 0.5549 0.5726 0.5867

NCF & SPEX

0.8784 0.9143 0.9625 0.6873 0.7027 0.7162

↑14.84% ↑12.05% ↑9.00% ↑23.86% ↑22.72% ↑22.07%

NGCF & SPEX

0.8897 0.9239 0.9619 0.6949 0.7197 0.7264

↑16.32% ↑13.22% ↑8.94% ↑25.23% ↑25.69% ↑23.81%

LightGCN & SPEX

0.8748 0.8861 0.8935 0.7166 0.7295 0.7310

↑14.37% ↑8.59% ↑1.19% ↑29.14% ↑27.40% ↑24.60%

GraphRec & SPEX

0.8327 0.8610 0.9014 0.7005 0.7079 0.7163

↑8.86% ↑5.51% ↑2.08% ↑26.24% ↑23.63% ↑22.09%

SAMN & SPEX

0.8412 0.8889 0.9461 0.6629 0.6751 0.6865

↑9.98% ↑8.93% ↑7.15% ↑19.46% ↑17.90% ↑17.01%

DiffNet++ & SPEX

0.8091 0.8582 0.9161 0.6841 0.6964 0.7081

↑5.78% ↑5.17% ↑3.75% ↑23.28% ↑21.62% ↑20.69%

We can find that, in most cases, SPEX can produce better performance for predicting paths with

various RS embedded. Specifically, we can observe that:

• Solely using SPEX can achieve satisfying results for predicting paths in terms of both

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝑁𝐷𝐶𝐺@𝐾 , showing that our GNN based design for the path prediction

module in SPEX is reasonable and practical.

• In most cases, modeling both the social recommendation task and the path prediction task

can improve the performance of path prediction. For example, SAMN & SPEX can improve

the performance of SPEX by 4.20%-10.48%, 2.52%-7.74% and 7.15%-19.46% on Epinions, Weibo

and Twitter, respectively.

Based on the above observations for path prediction and the conclusion from Section 6.2, we can

conclude that: The design of multi-task learning in SPEX can benefit both the social recommendation
task and the path prediction task.
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6.4 Performance of SPEX on Other Social Homophily Based RS (RQ3)
Similar to the idea of SPEX, FuseRec and DANSER are designed to collaboratively model several

important factors, including social homophily, for social recommendation. We compare their

performance before and after using SPEX to investigate whether SPEX can further improve social

homophily based methods. It is worth noting that, as pointed out in the descriptions for our

hyper-parameter settings, DANSER with the embedding size 64 will encounter the out-of-memory

problem using the graphics card in our experiment environment. Therefore, for the experiments in

this section, we set the embedding size to 64 for FuseRec (like other RS models) and 16 for DANSER,

respectively.

Tables 8 and 9 illustrate the performance of FuseRec and DANSER for social recommendation

and path prediction, respectively. Since Weibo and Twitter data sets do not contain item category

information that FuseRec requires, we only report results on Epinions in this section. From Table 8,

we can see that SPEX is able to further enhance the recommendation performance of FuseRec and

DANSER. FuseRec and DANSER already consider modeling social homophily. Hence the increase

percentages of using SPEX over FuseRec and DANSER are not as significant as what we have

observed on other RS models in Section 6.2. But the improvements are still consistent for different

evaluation measures. We can draw a similar conclusion for the path prediction task from Table 9.

In summary, SPEX still works on social homophily based RS methods, i.e., both social recommendation
and path prediction tasks can get further boosted.

Table 8. Recommendation performance of SPEX-enhanced FuseRec and DANSER on Epinions.

Method

Recall NDCG

@10 @20 @50 @10 @20 @50

FuseRec

(𝑑 = 64)

0.5444 0.6930 0.8838 0.3316 0.3691 0.4072

FuseRec & SPEX

(𝑑 = 64)

0.5494 0.6984 0.8875 0.3369 0.3735 0.4113

↑0.92% ↑0.78% ↑0.42% ↑1.60% ↑1.19% ↑1.01%
DANSER

(𝑑 = 16)

0.4221 0.5662 0.7831 0.2503 0.2866 0.3300

DANSER & SPEX

(𝑑 = 16)

0.4229 0.5670 0.7839 0.2509 0.2871 0.3304

↑0.19% ↑0.14% ↑0.10% ↑0.24% ↑0.17% ↑0.12%

Table 9. Path prediction performance of SPEX-enhanced FuseRec and DANSER on Epinions.

Method

Recall NDCG

@10 @20 @50 @10 @20 @50

SPEX

(𝑑 = 64)

0.7980 0.8198 0.8453 0.6390 0.6446 0.6496

FuseRec & SPEX

(𝑑 = 64)

0.8161 0.8293 0.8502 0.6430 0.6474 0.6516

↑2.27% ↑1.16% ↑0.58% ↑0.63% ↑0.43% ↑0.31%
SPEX

(𝑑 = 16)

0.7492 0.8487 0.9321 0.5210 0.5463 0.5631

DANSER & SPEX

(𝑑 = 16)

0.7700 0.8637 0.9397 0.5453 0.5692 0.5845

↑2.78% ↑1.77% ↑0.82% ↑4.66% ↑4.19% ↑3.80%
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6.5 Effects of Automatic Task Balancing (RQ4)
We also compare the automatic task balancing method introduced in Section 5.3 with a common

method for setting task weights in multi-task learning, i.e., assigning equal weights to the two

tasks for the joint loss in Equation 14.

Figure 4 illustrates the social recommendation performance and the path prediction performance

of SPEX-enhanced NCF, NGCF, LightGCN, GraphRec, SAMN or DiffNet++ on Epinions using

different settings for SPEX. In Figure 4, “XX & SPEX (1:1)” indicate that task weights are manually

set to be equal and kept fixed during optimization when using SPEX to enhance the RS model

“XX”. Other parts of “XX & SPEX (1:1)” are the same as “XX & SPEX”. We can observe that, for

most cases, our proposed automatic task balancing method (i.e., “XX & SPEX”) can achieve better

performance than manually setting task weights (i.e., “XX & SPEX (1:1)”). The better results show

that, compared to the commonly used naive method, SPEX does not require users to manually tune

the task weights to achieve good performance. Consequently, SPEX has the merit of reducing the

human cost in tuning multi-task learning for improving social recommendation.

Fig. 4. Comparison of different settings of SPEX on Epinions.

We also report the changes of 𝑒𝑥𝑝 (−2𝛼
′), 𝑒𝑥𝑝 (−2𝛽

′), L𝑝𝑎𝑡ℎ and L𝑟𝑒𝑐 in the first 50 epochs for

NGCF & SPEX on Twitter in Figure 5. As we can see, both L𝑝𝑎𝑡ℎ and L𝑟𝑒𝑐 decrease smoothly

with the help of the automatic task balancing mechanism, showing that SPEX is able to prevent

loss fluctuations and help each task converge in multi-task learning. Moreover, we can observe

that 𝑒𝑥𝑝 (−2𝛼
′) and 𝑒𝑥𝑝 (−2𝛽

′) eventually approach 1.1 and 1.2, respectively. Recall that we let
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𝛼 ′ = log𝛼 and 𝛽 ′ = log 𝛽 in Section 5.3.3 for numerical stability. Hence, we can estimate that

𝛼 and 𝛽 approach 0.9535 and 0.9129, respectively. Note that the approximations in Equations 18

and 20 become equalities when 𝛼 → 1 and 𝛽 → 1 (𝛽 is denoted by _ in Equation 20), respectively.

Therefore, we can conclude that the approximations in Equations 18 and 20 do not introduce large

value changes in practice.

Fig. 5. Changes of 𝑒𝑥𝑝 (−2𝛼
′), 𝑒𝑥𝑝 (−2𝛽

′), L𝑝𝑎𝑡ℎ and L𝑟𝑒𝑐 in the first 50 epochs for NGCF & SPEX on Twitter.
X axis indicates the number of epochs.

6.6 Effects of Different Feature Sharing Designs (RQ5)
We then compare the different feature sharing methods introduced in Section 5.2, namely the direct

sharing method, the correlation based Cross-Stitch unit and the Shared-Private method.

Figure 4 shows the social recommendation performance and the path prediction performance of

SPEX-enhanced NCF, NGCF, LightGCN, GraphRec, SAMN or DiffNet++ on Epinions using different

feature sharing methods in SPEX on Epinions. In Figure 4, “XX & SPEX (Cross-Stitch)” and “XX &

SPEX (Shared-Private)” represent that the direct feature sharing method in “XX & SPEX” is replaced

with the Cross-Stitch unit and the Shared-Private method, respectively. Other parts of “XX & SPEX

(Cross-Stitch)” and “XX & SPEX (Shared-Private)” are the same as “XX & SPEX”. Note that NCF

has two types of user embeddings for GMF (𝑑-dimensional embeddings) and MLP (2𝑑-dimensional

embeddings), respectively. Therefore, the correlation based Cross-Stitch unit and the Shared-Private

method can not be directly adopted for NCF and they are not reported in Figure 4. Nevertheless,

the simplest direct sharing method in SPEX (i.e., NCF & SPEX) can already significantly boost the

performance of NCF as we have seen in previous sections.

From Figure 4, we can see a surprising result: direct feature sharing (“XX & SPEX”) is the best

feature sharing method in most cases. It does not exceed another more complex feature sharing

method only in two cases: enhancing NGCF or DiffNet++ for the path prediction task. But “XX

& SPEX” is still the second best method with relatively good performance for the two cases. The

underlying reason, which is also pointed out by He et al. in [20], may be that user data and item

data in RS only has an ID without concrete semantics. More complex feature sharing designs are

powerful in computer vision applications, because the same data in these applications may have

different roles and semantics in different tasks [60] which can be better captured by complex feature
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sharing mechanisms. For RS, simple direct feature sharing is sufficient and more sophisticated

designs may even downgrade the performance.

6.7 Impact of Number of Heads (RQ5)
Lastly, we investigate the impact of number of heads on the performance of both social recommen-

dation and path prediction tasks using SPEX-enhanced NCF, NGCF, LightGCN, GraphRec, SAMN

or DiffNet++.

Figure 6 demonstrates the results when 1 head, 2 heads or 3 heads are used in SPEX on Weibo

data set. Using 3 heads is the default setting for 𝑔 in SPEX, i.e., “X & SPEX” in previous sections is

the same as “X & SPEX (3 heads)” in this section. From the results reported in Figure 6, we can find

that the performance get enhanced as the number of heads increases. But when we change from 2

heads to 3 heads, the improvements are marginal. We can observe similar trends on Epinions and

Twitter data sets. Thus, we conclude that using 2 or 3 heads is sufficient for SPEX to work well.

Fig. 6. Performance with varying head numbers on Weibo.

7 RELATEDWORK
In this section, we will elaborate on several research areas which are related to our work. As SPEX

adopts Graph Neural Network as its backbone, we will first discuss it. Then, we will introduce

related work on recommender systems including social recommender systems and multi-task

learning based recommender systems.
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7.1 Graph Neural Network and Its Applications
Due to the prevalence of graph data in real world and the success of deep learning in various

applications [53], there is a surge of works on extending deep learning techniques to graph data,

i.e., Graph Neural Network (GNN) [84, 95].

In early studies of GNN [16, 61], each node has its input features and each edge may also have

its features. A parametric function called local transition function, shared among all nodes, is used

to update the node state according to the neighborhood. Another parametric function called local

output function is used for producing the output of the node. Experimental results showed that

such a vanilla GNN [16, 61] is powerful for modeling structural data. One limitation of the vanilla

GNN is that the update of node hidden states follows a sequential process which suffers from the

high computational cost [95].

Later, convolution operation is generalized to non-Euclidean graph data and Graph Convolutional

Network (GCN) is developed to overcome the limitations of vanilla GNN. GCN can be divided

into spectral methods and spatial methods. The former define the convolution via graph Fourier

transform and convolution theorem [4, 9], while the latter define the convolution as a weighted

average function over all vertices located in the neighborhood of the target vertex [17, 31, 49, 52].

Since spatial methods do not need to explicitly specify the convolution operation and they are

in fact the general case of spectral methods, spatial methods have being deployed in numerous

applications [84, 93, 95].

In addition to GCN, there are other variants trying to improve the vanilla GNN. Graph Recurrent

Network (GRN) [36, 37] leverages the gate mechanism to facilitate the long-term information

propagation across the graph. Graph Attention Network (GAT) [71] incorporates the attention

mechanism into GNN and assign different attention score to each neighbor. Graph Pooling [88]

adopts the idea of pooling operation to generate hierarchical representations of graphs.

7.2 Recommender Systems
7.2.1 Social Recommender Systems. Recommender systems (RS) are an essential tool to overcome

information overload [1]. Social recommender systems (SRS) have been an important domain in the

RS community for a long time [68, 86]. It leverages and models additional social features provided

by the social network to enhance recommendation.

Early studies of SRS have exploited using social network to improve traditional RS. Ma et al.

propose various methods for social recommendation including employing matrix factorization

(MF) over both social network and user-item interaction graph [45], capturing social trust to

enhance MF [43], modeling both social trust and social distruct relations [44], introducing social

regularization into MF [46]. Jamali and Ester propose to use trust propagation to improve MF [25].

Later, they design another method which combines random walk and collaborative filtering to

capture social trust and improve recommendation [24]. Yang et al. [87] propose category-specific

social trust circles to improve MF. Li et al. [34] uses temporal influence to improve SRS. Li et al. [35]

introduce social community based regularization to enhance MF.

Recently, GNN has become dominating for the social recommendation problem, since it is a

natural fit for modeling information diffusion in social network. Song et al. [63] propose a dynamic

GNN to capture the dynamic interests of users in SRS. Fan et al. [11] propose GraphRec which

aggregates both user-item interactions and user-user social interactions in SRS. Wu et al. [81] design

DiffNet which simulates the diffusion of social influence by recursively using a influence diffusion

layer. They further extend DiffNet to DiffNet++ [80] and consider the diffusion processes in both

user-user social network and user-item interaction graph. Xu et al. [85] introduce the relation-aware

aggregation function into the GNN based social recommender and the aggregation depends on the
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type of the edge. Furthermore, they utilize meta-paths in Heterogeneous Information Network [62]

to better depict the nodes in the graph. Wang et al. [73] design the translation-based opinion

elicitation to identify the elite opinions and then use GNN to model their diffusion when making

recommendations. Wu et al. [82] propose a dual GAT to collaboratively learn representations for

different social effects in SRS. M et al. [42] merge user-item interaction graph and social network

into one unified graph and use multi-head GATs to predict the rating of a user-item pair. Yu et

al. [90] tailor GNN to aggregate information from motif-induced neighborhood to generate new

social relations to overcome data sparsity.

In addition to GNN, other deep learning techniques have also been successfully deployed in SRS.

Sun et al. [65] use LSTM with attention to model both static and dynamic preferences. Narang et

al. [51] propose a fusion RS which models multiple important factors (e.g., temporal context, social

influence and item similarity) for social recommendation using LSTM and the attention mechanism.

Fan et al. [12] design a random walk based method to sample useful item-aware social sequences

and then feeds them into Bi-LSTM to obtain the representations. Chen et al. [6] opt to model the

social recommendation problem via bipartite graph embeddings, self-attention mechanism and

inductive learning. Chen et al. [5] propose to use an attention based memory network to capture

user-friend relations. Fan et al. [10] and Yu et al. [89] harness Generative Adversarial Network to

provide informative and reliable guidance towards the training of social recommendation models.

As explained in Section 5.1, SPEX is a general framework and it is orthogonal to various existing

RS models (i.e., neural SRS, general neural RS and matrix factorization based methods) that are

applicable to the social recommendation task. Thus, SPEX can be plugged into existing systems to

enhance social recommendation.

7.2.2 Recommender Systems UsingMulti-task Learning. Although fewworks usemulti-task learning

to assist the social recommendation task, multi-task learning has shown its power in the general

recommendation task or other specific recommendation tasks.

Gao et al. [15] consider the cascading relationship among different types of behaviors in RS

and perform a joint optimization. Jin et al. [26] design a GNN based method to learn the strength

of different behaviors in RS via user-item propagation layer and capture behavior semantics by

item-item propagation layer. Tang et al. [67] propose the Progressive Layered Extraction model with

a new sharing structure design for the video recommendation task. Zhao et al. [94] adopt the idea

of Mixture-of-Experts for multi-task video recommendation. Bansal et al. [2] design a multi-task

learning based scientific paper recommendation model. To improve the interpretability of RS,

several recent works [7, 41, 74? ] perform item recommendation and recommendation explanation

jointly. A few knowledge graph based RS [72, 77] perform some tasks over knowledge graphs

jointly with the recommendation task in order to improve the overall results.

Compared to the above works, SPEX is specially designed for the social recommendation task

and it is easy to use SPEX to enhance existing social recommendation models without heavy

modifications. Another merit of SPEX is that it can automatically balance different tasks during the

joint optimization and avoid manual tuning task weights.

8 CONCLUSION
In this paper, we explore how to model both the formation of social homophily and the social

influence driven recommendation task to improve the performance of neural SRS or general RS

when social information is available. Previous works only focus on leveraging social influence

and neglect the importance of social homophily. We design a generic framework SPEX, which

simultaneously models both aspects and their mutual effect in the manner of multi-task learning.

Moreover, SPEX can automatically balance different tasks during the joint optimization to generate
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better performance. Experiments verify that SPEX can enhance the performance of various neural

SRS or general neural RS for the social recommendation task without heavy modifications. In the

future, we plan to enhance the interpretability of the prediction results of influence propagation

paths so that SPEX can help users understand how the social recommendation is provided. This

way, SPEX will be able to increase user satisfaction in addition to the performance gain it already

helps RS achieve.
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